Neuroprotectin D1 attenuates brain damage induced by transient middle cerebral artery occlusion in rats through TRPC6/CREB pathways.

نویسندگان

  • Chengye Yao
  • Jiancheng Zhang
  • Fang Chen
  • Yun Lin
چکیده

Neuroprotectin D1 (NPD1) may serve an endogenous neuroprotective role in brain ischemic injury, yet the underlying mechanism involved is poorly understood. In the present study, we aimed to investigate whether intracerebroventricular (ICV) injection of NPD1 is neuroprotective against transient focal cerebral ischemia. We also sought to verify the neuroprotective mechanisms of NPD1. Rats subjected to 2 h ischemia followed by reperfusion were treated with NPD1 at 2 h after reperfusion. PD98059 was administered 20 min prior to surgery. Western blot analysis was performed to detect the protein levels of calpain-specific aII-spectrin breakdown products of 145 kDa (SBDP145), transient receptor potential canonical (subtype) 6 (TRPC6) and phosphorylation of cAMP/Ca2+-response element binding protein (p-CREB) at 12, 24 and 48 h after reperfusion. The immunoreactivity of p-CREB and TRPC6 was measured by quantum dot‑based immunofluorescence analysis. Infarct volume and neurological scoring were evaluated at 48 h after reperfusion. NPD1, when applied at 2 h after reperfusion, significantly reduced infarct volumes and increased neurological scores at 48 h after reperfusion, accompanied by elevated TRPC6 and p-CREB activity, and decreased SBDP145 activity. When mitogen‑activated protein kinase kinase (MEK) activity was specifically inhibited, the neuroprotective effect of NPD1 was attenuated and correlated with decreased CREB activity. Our results clearly showed that ICV injection of NPD1 at 2 h after reperfusion improves the neurological status of middle cerebral artery occlusion (MCAO) rats through the inhibition of calpain‑mediated TRPC6 proteolysis and the subsequent activation of CREB via the Ras/MEK/ERK pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Effect of Combination Therapy Using Hypothermia and Granulocyte Colony-Stimulating Factor in a Rat Transient Middle Cerebral Artery Occlusion Model

Background: Stroke is the third leading cause of death. Hypothermia has been recognized as an effective method in reducing brain injury. In this study, we assessed the effects of granulocyte colony-stimulating factor (G-CSF) as a neuroprotective agent and mild hypothermia on mortality, behavioral function, infarct volume, and brain edema in Wistar rats. Methods: Forty male rats were used in fiv...

متن کامل

Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress.

(-)-Epigallocatechin-3‑gallate (EGCG), the predominant constituent of green tea, has been demonstrated to be neuroprotective against stroke in rats. However, the precise mechanism of EGCG responsible for neuroprotective activity remains unclear and no established treatment for decreasing the resulting neurological damage of stroke exists. The present study was designed to investigate the neurop...

متن کامل

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

Effect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat

Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular medicine reports

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2013